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Bosonic Super-Liouville System: Lax Pair and 
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We study the bosonic super-Liouville system, which is a statistical transformation 
of the super-Liouville system. The Lax pair for the bosonic super-LiouviUe system 
is constructed using the prolongation method, ensuring lax  integrability, and the 
solution to the equations of motion is also considered via Leznov-Saveliev 
analysis. 

1. INTRODUCTION 

Liouville and super-Liouville equations are important in a vast range of 
physical problems. For example, the Liouville equation is closely connected 
to string theory and two-dimensional gravity in the conformal gauge and is 
a very popular example of two-dimensional integrable field theory with 
conformal invariance, and the super-Liouville equation plays the same roles 
in super analogs of the above problems. 

From the point of view of Toda lattice field theory, the Liouville equation 
is nothing but the simplest Toda field theory with the Toda lattice denoted 
by a single node--the Dynkin diagram of the Lie algebra sl(2) [and the 
super-Liouville equation, which gauges the basic Lie superalgebra osp(ll2) 
(Toppan, 1991), is the simplest one from the family of super Toda field 
theories]. It is remarkable that for each underlying Lie algebra ~3 one can 
construct a Toda field theory. Analogously, for each basic Lie superalgebra 
one can construct a super Toda field theory. A more interesting fact is that 
for each Lie algebra ~3 of rank r > 1, there exists a so-called bosonic super 
Toda theory (Chao, 1993; Chao and Hou, 1993, 1994; Hou and Chao, 1993), 
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a kind of lattice field theory which can be viewed as the usual Toda field 
theory coupled to some bosonic "matter" fields, whose equations of motion 
look very similar to the super Toda equations written in component form for 
except the following two points4: (i) the Cartan matrices entering the equations 
of motion are different for bosonic super and true super Toda theories, since 
the underlying algebras are different; (ii) the bosonic super Toda theory 
contains only bosonic fields and hence does not yield a true supersymmetry. 
However, despite these differences, the bosonic super Toda theory does yield 
very nice mathematical properties both as integrable and conformal field- 
theoretic models; in particular, such a model is intimately related to the W~ 2) 
algebra if the underlying gauge group is chosen to be SL(n, R) (Chao and 
Hou, 1994). Moreover, it was recently argued in Ferreria et al. (1995) and 
Gervais and Saveliev (1995) that although classically the extended Toda 
theories such as the bosonic super-Liouville theory contain only bosonic 
fields, their quantum versions might give rise to some fermionic degrees of 
freedom and may have relevant applications in photoelectronic problems. 
Due to both their mathematical beauty and the potential physical signifi- 
cance, much effort has been given to the study of bosonic super Toda 
theories (Chao, 1993, 1994, 1995; Chao and Hou, 1993, 1994; Hou and 
Chao, 1993). 

Two puzzling points are worth further effort. First, since the equations 
of motion for bosonic super Toda and true super Toda theories are so much 
alike, one naturally expects to establish some relationship between these two 
kinds of theories; second, though the bosonic super Toda theory exists for 
almost all underlying Lie algebras, the simplest rank-one Lie algebra sl(2) 
is excluded from this picture and therefore no bosonic super-Liouville model 
exists along the above line. 

A naive answer to the first problem might be that the bosonic super 
Toda theories are just the statistically transformed super Toda theories, i.e., 
by replacing all the fermionic fields in super Toda theories by bosonic ones, 
one gets a bosonic super Toda theory. But this cannot be true, as the Cartan 
matrices entering the equations of motion are quite different for both kinds 
of theories. However, this naive idea might be a useful clue for constructing 
a bosonic super-Liouville model, and in this paper we adopt such a technique 
to define a bosonic super-Liouville model. 

We start from the supersymmetric Liouville equation 

D+D_CP = exp(,l~) (1) 

4Compare the equations of motion for bosonic super Toda theories in Chao (1993), Chao and 
Hou (1993, 1994), Hou and Chao (1993) and that of supersymmetric Toda theories in, e.g., 
Au and Spence (1995). 
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where we have chosen 

and 

_ 1 ~ _+0.7_0_~. 
D• 3 ~07_ 

= ~b + 3,,,/2 (0+,_ + 0_,+) + 60+0_F 

so that, in component form, equation (1) can be rewritten as follows: 

8+8_dp = 18~+~_e 'l' + 4e 2'1' 

0+d~_ = 3~+e* 

0_~+ = 3~_e* (2) 

These equations have exactly the same form as an extended Liouville equation 
obtained by Chao (1993, 1994) except that the fields ~• in (2) are fermionic. 
We call equation (2) with ~• changed into bosonic fields by statistically 
transmitted super-Liouville equation or bosonic super-Liouville equation 
(BSLE), and the present paper is devoted to the study of the integrability of 
that equation. We stress that in the BSLE no signature change occurs in front 
of the ~+~_ term, when the order of ~+ and ~_ is reversed 

Before going into detailed studies, we mention that equation (2), viewed 
as a BSLE, represents the usual Liouville system coupled to a pair of external 
fields ~_.. Moreover, these external fields do not possess mass, because 
the whole system of equations of motion is conformally invariant, i.e., the 
coordinate system (x+, x_) undergoes the conformal transformation 

X-,- ~ f •177 

the equations of motion will be left invariant provided the fields 6, ~-* 
transform as 

d# --> + In(f+) tn ((f'_),n 
, •  _~ (f'_.),r~ ,_+ 

It is interesting to see that the statistical transformation from the super- 
Liouville equation to the BSLE also changes the fields ~ .  and ~_ from the 
(�89 0) and (0, �89 of the Lorentz group to that of the classical conformal group. 

2. LAX-PAIR A N D  S Y M M E T R Y  A L G E B R A S  F O R  BSLE 

In this section we address the problem of integrability of the BSLE (2). 
A system of nonlinear partial differential equations is said to be integrahle 
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if it is a Hamiltonian system and possesses an infinite number of Poisson- 
commuting integrals of motion. This is the classical Liouville sense of integ- 
rability. Another, slightly weaker definition of integrability identifies the 
system with the compatibility condition of a system of linear auxiliary prob- 
lems, i.e., the Lax pair. Lax integrability will be identical to Liouville integ- 
rability if the Lax system admits a fundamental Poisson structure and this 
Poisson structure can be recast into the form of a classical Yang-Baxter 
formalism. Therefore the first step to considering the integrability of the 
BSLE either in the Liouville sense or in the Lax sense is to find its Lax 
formalism, and to this end the prolongation approach (Walquist and Estabrook, 
1975; Lu and Li, 1989a,b) is preferred. 

To begin with, we introduce a transformation of independent variables 

x0 + xl Xo - Xl 
x+--~ 2 ' x_ ---~ 2 

which leads to the changes O• --~ O0 --+ 01 of the derivatives. 
Setting at0 = 00dp, 7r~ = -01d~, we can express the system (2) by the 

following set of rank-two differential forms on the space of variables (x0, xl, 
'1', 0+, 0- ,  ~r0, ~1): 

(11 : d ~ +  A d x  ! - d3f 0 A d 0 +  - 30-e  ~' dx0 A d x  I 

0t-2 = d0-  A dXl + dro A dO- - 30+e '~ dxo A dxa 

(13 ~--- dd~ ^ dXl - ~'o dxo ^ dx I (3) 

(14 = d~b ^ dxo  - "rrz d x o  ^ dxl 

(15 = d~o ^ dxl - d~rl ^ dxo - (180+O_e ~' + 4e 2.) dxo ^ dXl 

On the intersection with the space of independent variables (Xo, Xa) the system 
(2) will be reproduced. It is easy to check that the system (3) of two-forms 
generates a closed ideal in the sense that 

d(1i  = 'rio'(1 j 

for some one-forms "q0. Given the system (3), we now assume that the 
(enlarged) prolongation (Lu and Li, 1989a, b) form is 

oJ = - d T  + F(dp, 0+, 0- ,  "tro, ~l) Tdxo + G(~b, ~+, ~_, ~ro, 7h)Tdxl (4) 

where F and G are functions of the indicated variables taking values in some 
undetermined Lie algebra, and the newly introduced "pseudopotential" T lies 
in the group generated by that Lie algebra. 

From the integrability condition 

dto e I(o~, (1) 
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where/(co, cx) is an ideal generated by the set {0ti} and {o~}, we have the 
following equations for F and G: 

F,+ - G,+ = 0 

r ,_  + c ,_ = o  

Fro - Gut = 0 (5) 

F~, l + G~, o = 0 

[F, G] + ffrlF , + ~roG, + 3e*(r  + t~+G,_) 

- (18,+d/_e* + 4eZ~ = 0 

where [F, G] = F G  - GF. Solving the system of  equations (5), we get 

1 -6 4' 
F = -~[XrlLo + 3d:+e 2 LI - 3 r  - e 2 L - i  + e*L2 - e~ 

1 *- *- 
G = [ ' r r ~  + 3~+e 2 Ll + 3 # - e  2 L - l  + e 'L2  + e ' L - 2 ]  

where Li = i = 0, -- 1, _+2, are operators satisfying the following commuta- 
tion relations: 

[Lo, L~] = - L t ,  

[Lo,/ 1 = -2 ta ,  

[Ll, L- l ]  = -2Lo,  

[L-l,/-,2] = --3L1, 

[Lo, L- i ]  = L-I  

[Lo, L-2] = 2L-2 

[Ll, L-2] --- 3L- l  

[/,2, L-2] = 4Lo 

(6) 

Notice that the system (6) does not yet generate a closed algebra. How- 
ever, one can easily see that all relations in (6) can be rewritten in a uni- 
fied form 

[L. ,  Lm] = (n - m)L.+m (7) 

for n, m = 0, +-1, ___2. Defining new generators iteratively by 

Lm+ 2 = l[Lm+ 1 LI] , Lm_ 2 = I [ L _ I ,  L_m_l]  , m >-- 1 
m m 

we find that equation (7) will close over the generators Lj, j = 0, - 1 ,  - 2 ,  
. . . .  This is the well-known Witt algebra or "centerless Virasoro algebra." 
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Now intersecting the prolongation form (4) on the solution manifold 
(x§ x_), we obtain the Lax pair for the BSLE (2), 

O+T = ( F + G ) T  

O_T = (F  - G ) T  (8) 

The existence of the Lax pair (8) ensures that the BSLE (2) is integrable 
in the Lax sense. However, since no Hamiltonian structure is currently known 
for the BSLE, the Liouville integrability cannot be established at this point. 

Notice that the Lax pair (8) involves the generator of the Witt algebra 
with degrees ranging from - 2  to 2. It is well known that the Witt algebra 
does not contain any finite-dimensional subalgebra of dimension greater than 
3. Therefore the Witt algebra is the only possible gauge algebra of the Lax 
system (8). Moreover, as there is no nondegenerate symmetric bilinear form 
on the Witt algebra, it is hard to obtain a Lagrangian formulation for the 
BSLE as in the conventional Toda case by taking the trace of A+A_, with 
A+_ being the Lax potentials. Actually, if the Lagrangian is indeed in the form 
of a trace over A+A_ in the case of the BSLE, then this would lead to the 
conclusion that the BSLE is a topological theory because the Lagrangian is 
identically zero. Whether this is true or not deserves further study. 

3. SOLUTION OF BSLE 

Given the Lax pair (8), we can now consider the possible solutions of 
the BSLE (2) using the Leznov-Saveliev analysis. 

For convenience we chose the following specific gauges for the Lax 
pair of the BSLE: 

and 

where 

O+TL = (b+dpLo + 3d/§ + I-a)TL 

O-TL = -(3d:_e'l 'L_l + e24'L_2)T~. (9) 

O+TR = (3O+e'l'Li + e2~'L2)TR 

O-TR = - (O-(bLo + 3~b-L_l + L-2)TR 0o) 

T L = e 4'L~ T ,  TR = e -4'L012 T (11) 
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Now let us choose some highest weight representation of the Witt algebra 
with highest weight h and denote the highest weight vector by Ih). The dual 
of Ih) is denoted (hi. The highest weight conditions read 

Lolh) = hlh), (hlLo = (hlh 

L.Ih) = O, (hlL_.  = 0  

(hlh) = 1 

From (9), (10), and (12), it follows that 

(hlO_TL = O, 0+TRRIIh) = 0 

and hence the vectors 

~(x+) = (hlTL, 

are chiral, namely 

Moreover, defining 

~(x_) = T~Rhh) 

( n > 0 )  

o_~(x+) = o, o .~ (x _ )  = o 

T L  = e~+L-I T L 

TR = e -*-L'  TR 

we find from an easy calculation that 

(hlLtO-i"L = O, O+~lL_ l lh )  = 0 

showing that the vectors 

~(x+) = (hIL, TL, ~(x_) = ~~R'L-11h) 

are also chiral 

O_~(x§ = O, O§ = 0 

From equations (13-18), a straightforward calculation gives 

~(x+)~(x_) = e h* 

~(x+)~(x_) = 2hO+e h'l' 

~(x+)~(x_ ) = 2hO-e  h* 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 
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which in turn gives a formal solution to the BSLE 

~b = lln[~(x+)~(x_)] (19) 

1 g(x.)~(x_) (20) 
,1,. - 2h ~(x.)~(x_) 

I ~(x+)~(x_) (21) 
d:_ - 2h ~(x+)~fx_) 

Some remarks are in order. First, one could be quite dubious of the 
correctness of the assumption of the highest weight conditions (12). Indeed, 
it is known from the study of conformal field theory that no nontrivial uni tary  

highest weight representations exists for Virasoro algebra at the center c = 
0. However, as we are using the Witt algebra as a gauge algebra of our Lax 
system, we are not concerned with the unitarity of the representation and so 
are free to choose the nonunitary representations in (12). Actually, the choice 
of nonunitary representations in (12) is not unavoidable if we introduce an 
extra auxiliary field, say p, and modify the Lax system (8) to the form 

O+T = (O+pc + F + G ) T  

O_T = ( - O _ p c  + F - G ) T  (22) 

and change the gauge algebra (6) into the full Virasoro algebra 

r 3 [L,,, L,,,] = (n - m)L,,+m + -~-(n - n)8,+m.0 

One can show that such modifications do not change the equations of motion 
for d~, ~_+ and only give rise to a new equation for the auxiliary field p, 

O+O_p + 2 exp(2~) = 0 

The modified Lax system (22) can then be treated in exactly the same way 
as above and one can choose unitary highest weight representations of the 
Virasoro algebra in place of the nonunitary representations in (12). 

Another remark is as follows. Though the solution of the BSLE (2) can 
be expressed in the form of (21), the chiral vectors cannot be regarded as 
arbitrary, because they are defined from the nonchiral objects TL, TR and ~/'t., 
7r R subject to nontrivial constraints (the Lax pair). The explicit solution of 
the BSLE therefore cannot be obtained in this way. In the conventional 
Liouville and Toda cases, one can, however, make a similar construction 
starting not from the specific gauges (9) and (10) of the Lax pair, but from 
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the set of  so-called Drinfeld-Sokolov systems. In the present case such 
systems would look like 

O+Q = (O+k(x+)L o + 3p(x§ + I-a)Q, O_Q = 0 

0_0. = 0(0_~x_)L0 + 3p(x_)t._~ + L-2, 0+0. = 0 

with some arbitrary chiral functions k(x+_) and p(x~). Unfortunately, we have 
been unable to obtain exact solutions to (2) using the above Drinfeld- 
Sokolov systems. 

4. DISCUSSION 

In this paper, we have identified the Lax integrability for the BSLE (2) 
by using an enlarged prolongation approach. The same Lax pair will be 
obtained if we use the original scalar form of  the prolongation forms as in 
the classic paper of Walquist and Estabrook (1975). 

On the other hand, we expressed the solution of  the BSLE in terms of 
some chiral vectors obtained from the action of the Lax system in some 
specific gauges which is in complete analogy to the conventional Toda and 
bosonic Toda cases. However, as mentioned at the end of  the last section, 
the Drinfeld--Sokolov construction of solutions for the BSLE is not established 
and this may be one of the subtle points where the BSLE behaves in a 
different way from the bosonic super Toda theories. 

To conclude this paper, we briefly point out some related open problems: 
1. It's easy to see that the quantity ~+~b0-cb + 184+4-e * + 2e 24' is a 

Lagrangian for the "Liouville part" ~p in the BSLE (2). However no Lagrangian 
expression for 4+_ is known. A principal reason is that 4_+ are chiral fields 
of first order, and it seems interesting to see whether one can construct a 
Hamiltonian or Lagrangian formalism for the whole BSLE via the Dirac 
method. 

2. It was shown in the introduction that the BSLE is conformal invariant 
and thus admits a WittL ~ WittR symmetry algebra. Is there any relationship 
between the conformal symmetry algebra and the gauged Witt algebra? 
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